Yudovich type solution for the 2D inviscid Boussinesq system with critical and supercritical dissipation

نویسندگان

  • Xiaojing Xu
  • Liutang Xue
چکیده

In this paper we consider the Yudovich type solution of the 2D inviscid Boussinesq system with critical and supercritical dissipation. For the critical case, we show that the system admits a global and unique Yudovich type solution; for the supercritical case, we prove the local and unique existence of Yudovich type solution, and the global result under a smallness condition of θ0. We also give a refined blowup criterion in the supercritical case. © 2014 Elsevier Inc. All rights reserved. MSC: 76B03; 35Q31; 35Q35; 35Q86

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Well-posedness and Inviscid Limits of the Boussinesq Equations with Fractional Laplacian Dissipation

This paper is concerned with the global well-posedness and inviscid limits of several systems of Boussinesq equations with fractional dissipation. Three main results are proven. The first result assesses the global regularity of two systems of equations close to the critical 2D Boussinesq equations. This is achieved by examining their inviscid limits. The second result relates the global regula...

متن کامل

Global Well-posedness for the 2d Boussinesq System without Heat Diffusion and with Either Anisotropic Viscosity or Inviscid Voigt-α Regularization

We establish global existence and uniqueness theorems for the two-dimensional non-diffusive Boussinesq system with viscosity only in the horizontal direction, which arises in Ocean dynamics. This work improves the global well-posedness results established recently by R. Danchin and M. Paicu for the Boussinesq system with anisotropic viscosity and zero diffusion. Although we follow some of their...

متن کامل

Regularity Criteria for the 2d Boussinesq Equations with Supercritical Dissipation∗

This paper focuses on the 2D incompressible Boussinesq equations with fractional dissipation, given by Λαu in the velocity equation and by Λβθ in the temperature equation, where Λ= √−Δ denotes the Zygmund operator. Due to the vortex stretching and the lack of sufficient dissipation, the global regularity problem for the supercritical regime α+β<1 remains an outstanding problem. This paper prese...

متن کامل

The 2d Boussinesq-navier-stokes Equations with Logarithmically Supercritical Dissipation

This paper studies the global well-posedness of the initial-value problem for the 2D Boussinesq-Navier-Stokes equations with dissipation given by an operator L that can be defined through both an integral kernel and a Fourier multiplier. When the symbol of L is represented by |ξ| a(|ξ|) with a satisfying lim|ξ|→∞ a(|ξ|) |ξ|σ = 0 for any σ > 0, we obtain the global well-posedness. A special cons...

متن کامل

Eventual Regularity of the Two-Dimensional Boussinesq Equations with Supercritical Dissipation

This paper studies solutions of the two-dimensional incompressible Boussinesq equations with fractional dissipation. The spatial domain is a periodic box. The Boussinesq equations concerned here govern the coupled evolution of the fluid velocity and the temperature and have applications in fluid mechanics and geophysics. When the dissipation is in the supercritical regime (the sum of the fracti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014